Technology Development

2Blades seeks to advance technologies from the initial discovery stage into products.  While in some cases 2Blades has undertaken some level of development work internally, in others this is done through collaborations or licensing of technologies directly to partners with commercial delivery capacity.  For example, our work with the EFR receptor has been carried out through a combination of 2Blades direct support, collaborations and licensing. 

Technology Development Impacts

General

Horvath, D (2015). Intellectual property rights: a useful tool to enable broad benefits for agriculture. National Academies of Science study on Genetically Engineered Crops: Past Experience and Future Prospects.

Dangl J, Horvath D, and Staskawicz B (2013). Pivoting the Plant Immune System from Dissection to Deployment. Science 341: 746.

Nekrasov V, Staskawicz B, Weigel D, Jones J, and Kamoun S (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology 31: 691-693.

Wulff BBH, Horvath DM, and Ward ER, (2011) Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology 14:468-476.


amr3 

Witek K, Jupe F, Witek A, Baker D, Clark M, and Jones J (2016). Accelerated cloning of a potato late blight–resistance gene using RenSeq and SMRT sequencing. Nature Biotechnology doi:10.1038/nbt.3540.


Bs3 Gene

Römer P, Jordan T, and Lahaye T (2010). Identification and application of a DNA-based marker that is diagnostic for the pepper (Capsicum annuum) bacterial spot resistance gene Bs3. Plant Breeding 129:737-740.


EFR

Schwessinger B, Bagar O, Nicolas T, Holton N, Nekrasov V, Ruan D, Canlas PE, Daudi A, Petzold CJ, Singan V, Kuo R, Chovatia M, Daum C, Heazlewood JL, Zipfel C, and Ronald PC (2015). Transgenic expression of the dicotyledonous pattern recognition receptor EFR in rice leads to ligand-dependent activation of defense responses.  PLoS Pathogens 11:e1004872.

Schoonbeek H, Wang H-H, Stefanato F, Craze M, Bowden S, Wallington E, Zipfel C, and Ridout CJ (2015). Arabidopsis EF-TU RECEPTOR enhances bacterial disease resistance in transgenic wheat. New Phytologist 206: 606-613.

Holton N, Nekrasov V, Ronald PC, and Zipfel C (2015). The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signalling components in monocots and dicots.  PLoS Pathogens 11:e1004602.

Rougon-Cardoso A, and Zipfel C (2010). A new approach to confer broad-spectrum disease resistance in plants. Information Systems for Biotechnology News Report Issue June 2010:5-8.

Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BPHJ, Staskawicz B, Jones JDG, and Zipfel C (2010). Inter-family transfer of a plant pattern recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology 4:364-369.

Ridout C, Sherwood E, Rougon A, Lacombe S, and Zipfel C (2009). Evaluation of pattern recognition receptors for durable disease control in crops. Phytopathology 99:S108.


Pathogen-inducible promoters

Römer P, Recht S, Strauß T, Elsaesser J, Schornack S, Boch J, Wang S, and Lahaye T (2010). Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytologist 187: 1048-1057.

Römer P, Recht S, and Lahaye T (2009). A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proceedings of the National Academy of Sciences USA 106: 20526-20531.


TAL Code

Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T, Bultmann S, and Leonhardt H (2014). Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Research 42:e38  doi: 10.1093/nar/gkt1348.

Mussolino C, Alzubi J, Fine EJ, Morbitzer R, Cradick TJ, Lahaye T, Bao G, and Cathomen T (2014). TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Research 42: 6762-6773.

de Lange O, Wolf C, Dietze Jr, Elsaesser J, Morbitzer R, and Lahaye T (2014). Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nucleic Acids Research 42: 7436-7449.

Schornack S, Moscou MJ, Ward ER, and Horvath DM (2013). Engineering plant disease resistance based on TAL effectors. Annual Review of Phytopathology 51: 383-406.

De Lange, O, Schreiber T, Schandry N, Radeck J, Braun KH, Koszinowski J, Heuer H, Strauß A, and Lahaye T (2013). Breaking the DNA binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytologist 199:773–786.

Bultmann S, Morbitzer R, Schmidt C, Thanisch K, Spada F, Elsaesser J, Lahaye T, and Leonhardt H (2012). Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Research 40: 5368-5377.

Mussolino C, Morbitzer R, Lütge F, Dannemann N, Lahaye T, and Cathomen T (2011). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Research 39: 9283-9293.

Morbitzer R, Elsaesser J, Hausner J, and Lahaye T (2011). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Research 39: 5790-5799.

Morbitzer R, Römer P, Boch J, and Lahaye T (2010). Regulation of selected genome loci using de novo engineered transcription activator-like effector (TALE)-type transcription factors. Proceedings of the National Academy of Sciences USA 107: 21617-21622.

Bogdanove AJ, Schornack S, and Lahaye T (2010). TAL effectors: finding plant genes for disease and defense. Current Opinion in Plant Biology 13: 394-401.

Römer P, Strauss T, Hahn S, Scholze H, Morbitzer R, Grau J, Bonas U, and Lahaye T (2009). Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. Plant Physiologist 150: 1697-1712.